GPU-accelerated algorithms for compressed signals recovery with application to astronomical imagery deblurring

A. Fiandrotti, S.M. Fosson, C. Ravazzi

International Journal of Remote Sensing, Vol 39, No 7, Pages 2043-2065, Jul 2017


Compressive sensing promises to enable bandwidth-efficient on-board compression of astronomical data by lifting the encoding complexity from the source to the receiver. The signal is recovered off-line, exploiting GPUs parallel computation capabilities to speedup the reconstruction process. However, inherent GPU hardware constraints limit the size of the recoverable signal and the speedup practically achievable. In this work, we design parallel algorithms that exploit the properties of circulant matrices for efficient GPU-accelerated sparse signals recovery.

Our approach reduces the memory requirements, allowing us to recover very large signals with limited memory. In addition, it achieves a tenfold signal recovery speedup thanks to ad-hoc parallelization of matrix-vector multiplications and matrix inversions. Finally, we practically demonstrate our algorithms in a typical application of circulant matrices: deblurring a sparse astronomical image in the compressed domain.

Additional material

Click on an item to open a preview, then on (top-left) to download it.