Laplace Mixture Models for Efficient Compressed Sensing with Side Information

C. Ravazzi and E. Magli

2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, March 5-9, 2017


In this paper, we propose a new method for the recovery of a sparse signal from few linear measurements using a reference signal as side information. Modeling the signal coefficients with a double Laplace mixture model, and assuming that the distribution of the components of the prior information differs slightly from the unknown signal, the problem is formulated as a weighted â„“1 minimization problem.

Additional material

We derive sufficient conditions for perfect recovery and we show that our method is able to reduce significantly the number of measurements required for reconstruction. Numerical experiments demonstrate that the proposed approach outperforms the best algorithms for compressed sensing with prior information and is robust in imperfect scenarios.

Click on an item to open a preview, then on (top-left) to download it.